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Abstract 

This paper explores the integration of the Proper 
Orthogonal Decomposition (POD) algorithm with 
machine learning to develop a non-intrusive reduced-
order model for a nonlinear inductor. Using the Finite 
Element Method (FEM), an axisymmetric model of a 
nonlinear inductor is constructed and a dataset 
consisting of the magnetic vector potential's spatial 
distribution for different current values is collected. POD 
is applied to reduce the dataset's dimensionality, while 
machine learning establishes a mapping between the 
inputs and the reduced state vector. The resulting 
surrogate model significantly increases computational 
efficiency with minimal accuracy loss. 

1  Introduction 

The Finite Element Method (FEM) is a robust approach 
for modeling nonlinear magnetic problems by discretizing 
governing equations into a system of partial differential 
equations. However, applications like optimization and 
model predictive control demand reduced computational 
time and memory usage. Model Order Reduction (MOR) 
techniques, such as Proper Orthogonal Decomposition 
(POD) [1], tackle these challenges by projecting the 
system matrices of the Full Order Model (FOM) onto a 
lower-dimensional subspace, resulting in a Reduced 
Order Model (ROM).  
MOR techniques are effective for linear problems but 
face additional complexities when applied to nonlinear 
systems. Methods like the Discrete Empirical 
Interpolation Method [2] can yield strong results for 
nonlinear systems; however, their performance is case-
dependent. Moreover, their reliance on intrusive 
modifications can be challenging, particularly when the 
FOM is developed using commercial software. An 
alternative approach leverages machine learning to 
directly map inputs to the solution, offering greater 
flexibility but encountering challenges such as the high 
computational cost of generating training data and 
managing the high dimensionality of the solution space. 
Previous research has addressed this by employing the 
Proper Orthogonal Decomposition (POD) algorithm to 

reduce solution dimensionality, followed by training 
machine learning models —such as Gaussian Process 
Regression (GPR) [3] and Artificial Neural Networks 
(ANNs) [4]— to map inputs to the reduced solution 
vectors. In this work, the approach is applied to create a 
ROM of an inductor wound around a nonlinear magnetic 
core. 

2  Case study 

The device under study consists of a multi-turn coil of 100 
turns wound around a ferrite half-core typical of proximity 
sensors, whose dimensions are specified in [5]. A ferrite 
disc with a diameter of 70 mm and a width of 14.5 mm is 
positioned at a distance of 1 mm from the half-core. The 
3D problem is approached through the magnetostatic 
problem in axisymmetric coordinates: 

∇ ⋅ 𝜈′(Φ)∇Φ = −Js,θ, (1) 

written in the (𝑟, 𝑧, 𝜃) coordinates system. In Equation (1) 

𝜈′ =  
1

𝑟 𝜇𝑟(𝑩)𝜇0
 is the magnetic reluctivity, dependent on 

the magnetic flux density 𝑩 = ∇ × 𝑨. Φ = 𝑟𝐴 θ 
represents the magnetic vector potential in the 𝜃 

direction, scaled by the distance 𝑟 from the axis of 

symmetry, while 𝐽𝑠,𝜃 represents the source current, 

assumed uniform in the multiturn coil fed by DC current. 
Equation (1) is also subject to the Dirichlet boundary 

condition. Due to the effect of magnetic saturation, as 
presented in Fig. 1, the concatenated flux grows 
nonlinearly with the coil current. 

 

Figure 1: Concatenated flux for different current 
values. 

Equation (1) is discretized using the FEM, obtaining the 
nonlinear system of equations: 
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𝐊(𝒙)𝒙 = 𝐁𝒖. (2) 

3  Reduced order modeling 

The FOM is first simulated for 101 current values, 

obtaining the nodal distribution of 𝐴𝜃 by shifting 𝒙. The 

data collected is then split into a training and validation 
dataset, obtaining two snapshot matrices of 29 and 72 
items respectively. POD is used to find a reduced basis 

𝑽 for the solution by collecting a limited number of 

singular vectors of the training snapshot matrix, 
presented in Fig. 2.   

 

 

 

Figure 2: First three modes of the snapshot matrix. 

The reduced basis is employed to project the state vector 

as 𝒙 ≈  𝑽𝒛, reducing the number of variables from 2932 
to 3. GPR is then employed to find a relationship between 

the input current and the coefficients 𝒛. The GPR 

surrogate is then used to obtain a prediction �̂� for new 

current values, which can be expanded using the basis 𝐕 

obtaining the nodal distribution of 𝐴𝜃: 

�̂�(𝑢) = 𝐕�̂�(𝑢). (3) 

 As shown in Fig. 3 the surrogate model predicts the POD 

coefficients, providing an accurate estimate for 𝐴𝜃, 

presented for a validation point in Fig.4. The accuracy of 
the surrogate depends on two factors. The reconstruction 
error, introduced by the POD can be reduced by 
increasing the number of modes considered. Moreover, 
the prediction error associated with the machine learning 
approach can be tackled by tuning the algorithm and 
increasing the number of data points.  

2  Conclusions 

While preliminary results show the effectiveness of the 
approach, the full paper will adapt the method for a more 

complex representation of the device. Moreover, different 
machine learning approaches will be considered. 

 

Figure 3: Reduced state vector as a function of the 
input current, dashed lines represent the model 
prediction while continuous lines are the true solution. 

 

 

Figure 4: Solution and prediction error for 𝐼 = 5.4 A 
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